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A MULTIGRID METHOD FOR RECIRCULATING FLOWS 

S. SIVALOGANATHAN AND G. J. SHAW 

Oxford University Computing Laboratory, 8-1 1 Keble Rd, Oxford, U . K .  

SUMMARY 

The use of multigrid methods in complex fluid flow problems is recent and still under development. In this 
paper we present a multigrid method for the incompressible Navier-Stokes equations. The distinctive 
features of the method are the use of a pressure-correction method as a smoother and a novel 
continuity-preserving manner of grid coarsening. The shear-driven cavity problem is used as a test case 
to demonstrate the efficiency of the method. 
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INTRODUCTION 

The prediction and simulation of complex recirculating fluid flow phenomena is an area of 
increasing importance in both an industrial and research context. 

The convergence rate of solution procedures for the Navier-Stokes equations is in general 
strongly dependent on the mesh spacing used to discretize the problem, as well as on the Reynolds 
number. This has resulted in the need to develop new methods for which high mesh refinement 
does not result in an unacceptable increase in CPU time. 

The multigrid method is an iterative procedure which ideally exhibits grid-independent 
convergence rates (i.e., the method converges at a rate independent of the mesh length of the 
grid). It has its origins in the work of Fedorenko’ and Bakhvalov.’ The potential of the method 
has been realized and demonstrated in the solution of various elliptic model problems (see 
Hackbusch3 and Wesseling4). In the field of incompressible fluid dynamics various publications 
have appeared in the literature. Brandt and Dinar’ recommend the use of a distributive 
Gauss-Seidel scheme as a smoother for the Navier-Stokes equations and Fuchs and Zhao6 
have reported extensively on numerical results obtained using this approach. In contrast Vanka’ 
uses a symmetric coupled Gauss-Seidel smoother, thus retaining the full coupling between 
pressure and velocity, and presents results for a range of test problems. Ghia et aZ.* use a 
streamfunction-vorticity formulation and a multigrid method which uses a coupled strongly 
implicit procedure as a smoother. They obtain results over a range of Reynolds numbers up to 
10000 for the driven cavity problem on very fine meshes. Our numerical results are assessed 
against their definitive results later in the paper. 

This paper describes a FAS cycling algorithm applied to a finite volume discretization on a 
staggered mesh. An essential requirement in the design of an efficient multigrid method is a 
good smoothing procedure. Our proposed smoother for the Navier-Stokes equations is the 
SIMPLE pressure-correction scheme of Patankar and S ~ a l d i n g . ~  This has been successfully used 
in many industrial codes as an iterative solver and preliminary experiments indicate that it has 
good smoothing properties. 
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A novel feature of our approach has been the manner in which grids have been coarsened so 
as to ensure that, if the continuity equation is satisfied on the finest grid, then the restricted 
variables will also automatically satisfy continuity on all coarser grids. 

The main emphasis of the paper is on the ability to solve the discrete non-linear system of 
equations efficiently rather than on accuracy at high Reynolds numbers. To this end, stable 
upwind approximations to convective terms are used. However, caution must be exercised in 
interpreting numerical results, since artificially high diffusion arises from the use of upwinding. 
Strikwerdal' demonstrates that false scaling effects are also present. Given sound solution 
procedures for such stable approximations, higher-order .accuracy may be obtained by means 
of various defect-correction techniques or by extrapolation of relative truncation errors-see 
Brandt." 

This paper is the first of two dealing with multigrid pressure-correction methods. Its companion, 
Shaw and Sivaloganathan,12 gives a theoretical analysis of the SIMPLE pressure-correction 
algorithm as a smoothing method. 

GOVERNING EQUATIONS AND DlSCRETIZATION 

The equations expressing conservation of mass and momentum for an ideal incompressible 
Newtonian fluid are given by 

-++---- - +- 2p- +-- p - + -  , ap a p v 2  apuv ( :;) :?[ (:; 31 ay ax aY aY 

apu a p v  
ax ay -++=o, (3) 

(x, y)&, where x, y denote the co-ordinate axes and u, u the components of the velocity in these 
directions; p denotes the pressure, p the viscosity and p the density. In the following description 
of the discretization it is assumed, for clarity of presentation, that p and p are constants. However, 
the method to be described is applicable to the case p = p(x, y), p = p(x, y) ,  for which the extension 
is straightforward. 

The discretized equations are formed using a staggered grid with variables located as shown 
in Figure 1. There are several methods of devising finite difference approximations, but to ensure 
that the scheme is conservative a finite volume approach is adopted (see Roache13). Due to the 
staggering of the mesh, the three different types of control volume shown in Figure 2 will be 
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Figure 1. A section of the staggered MAC grid 
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u-momentum v-momentum continuity 

Figure 2. Control volumes for the interior 

u-momentum v-momentum continuity 

Figure 3. Control volumes adjacent to the boundary 

required for the two momentum and continuity equations in the interior, with straightforward 
modifications near the boundaries as illustrated in Figure 3. The finite volume equations are 
then derived in a standard manner by integrating (1)-(3) over their respective control volumes, 
assuming a linear variation between nodes for the dependent variables but constant fluxes over 
each control volume surface. The source terms are assumed constant over each control volume. 

With reference to Figure 1, the resulting discrete equations on a uniform grid ah c S2, of mesh 
length h, are 

where 
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a;= x u : ;  
a 

a;= &I:; (84 
a 

a ranging over N, S, E, W, points. 

the eastern wall of the relevant control volume. It is defined as 
The convective mass flux (pu), in the x-momentum equation is an approximation to pu on 

( P 4 ,  = M u ,  + UE). 
Other mass flux terms are treated analogously. 

A more detailed discussion of this discretization can be found in Patankar and Spaldingg or 
Sivaloganathan and Shaw,14 but essentially it simply results in a switching from central to donor 
cell/upwinding of the convection term plus neglect of diffusion in the direction considered, 
whenever the appropriate cell Reynolds number is greater than two. 

We shall not dwell on the discretization near the boundaries, since the modifications necessary 
are clear and straightforward. 

Any additional scalar conservation law will have nodal values of its dependent variables at 
the same points as the pressures, and hence a finite control volume identical to the continuity 
equation control volume can be used to discretize this. 

PRESSURE-CORRECTION METHODS 

In this section we describe the SIMPLE algorithm of 
framework of general pressure-correction methods. 

Consider the system 

Patankar and Spalding,' setting it in a 

(9) 
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which is equation (4) with additional source terms which arise during the multigrid process. 
Let q h  = (&, U h , p h )  be an approximate solution to (9) and $h = ( a h ,  f l h , p h )  = q h  + Sq = 

q h  + (6% du, 6 p )  be the approximation obtained from q h  after a pressure-correction iteration. 
Substituting q h  into equation (9) gives 

(u; :uh - p 6 z d ; u h  f 6 t p h  - f;:) + (a;: 6u - pd$si 60 + 6; dp) = 0, ( 104 

( a ~ ~ h - ~ 6 ~ 6 ~ u h + 6 ~ p , - f ~ ) + ( a ~ 6 ~ - ~ 6 ~ 6 ~ 6 u  +Sidp)=o,  (lob) 
(6;uh f 6 iuh  - f { )  + (6; 6u f 8% 6Y) = 0. ( 1 0 4  

The solution of (10) for Sq yields an exact solution q h  to (9). However, the system (10) is as 
difficult to solve as (9) itself. Therefore we attempt to solve a simplified problem. Particular 
pressure-correction methods, described in the literature, arise from making various assumptions 
concerning the terms in (10). The first and most common is that the current approximation q h  

already satisfies the momentum equations of (9). In order to justify this assumption, the 
pressure-correction method is normally applied only after the approximate independent solution 
of the momentum equations. In practice this is often interpreted as meaning the application of 
one or two line relaxation sweeps. Given this assumption, the correction Sq satisfies 

a;: su - ps,:s; sv + s,: s p  = 0, (1 la) 
u; s u  - ps,:s:: su + s:: s p  = 0, 

(8,: su + 8t;Su) = - (s;uh + Siv, - fh"). 
The SIMPLE pressure-correction method further neglects the mixed derivative terms and 

diagonalizes the operators a;: and a; to give 

df: SU = - S; Sp, 

d; SV = - S i  Sp, 
(6; 6u + 6; 6v) = - ( h i u h  + b i v h  - f:), 

where 43 (x, Y )  = a; Q (x, Y )  and Q (x, y) = a; Q(x, y). 
Hence the corrections 6q satisfy 

su = - (d;:)- s,: 6p,  

The algorithm proceeds by applying a few line Gauss-Seidel sweeps to the 'Poisson' 
equation (12c) for S p  and hence obtaining Su, Su from equations (12a) and (12b). The updated 
solution qh is then defined by 

a h  = u h  + ruu 6u, 

f lh = v h  + ruu 6u, 

Oh = P h  + r p  sP, 
where ruo, rp  are (under) relaxation parameters. 

This procedure is applied after a few line relaxation sweeps of the momentum equations, using 
a relaxation parameter rmom. It aims to satisfy the continuity equation assuming that the 
momentum equations are satisfied. 
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It is easy to show that the system arising from equation (12c) is singular; and that a unique 
solution exists (providing the pressure correction 6 p  is fixed at a point) iff the sum of all the 
right-hand-side terms is equal to zero; otherwise there is no solution. Although this condition 
is satisfied on the finest grid, for which the source terms are zero, in a multigrid context we have 
to deal with situations where this may not be true on coarser grids. However, the condition 
may be enforced on coarser grids by a slight modification of the discretization near the boundary 
and this is discussed shortly. 

MULTIGRID FOR NON-LINEAR PROBLEMS 

The multigrid approach for linear operators is well documented in the literature (see Brandt' 
and Stiiben and Trottenberg16). For non-linear problems, 

N h ( q h )  = f h ,  (13) 
there are two basic approaches. The problem may be globally linearized by Newton's method 
and the resulting systems solved by linear multigrid. Alternatively, one may use the full 
method, which improves the approximate solution without global linearization, usually by 
applying Newton's method only to the local set of unknowns currently being updated. The FAS 
approach is adopted in this paper. 

Denote the application of v non-linear relaxation sweeps to (13) by 

q h  = S " ( q h ,  N h ,  f h ) .  

It is imperative that the error in qh is smooth in comparison with that of q h .  In this connection 
the SIMPLE algorithm is analysed in Shaw and Sivaloganathan." The following is a brief 
description of a two-grid FAS method applied to (13). 

Smooth an initial approximation qg by applying v1 iterations of a non-linear smoother S: 
Assume the existence of a coarse grid RH, H > h, and grid transfer operators 

R: g(Rh) + 9(RH) (restriction), 

P: g(RH) --f g @ h )  (prolongation), 

where g(nh) is the space of gridfunctions defined on a h ,  and similarly for 52,. The algorithm 
proceeds as follows (a superscript tilde implies that a gridfunction is unsmooth and a bar that 
it is smooth): 

(1) Pre-smoothing 

Smooth an initial approximation qj by applying v1 iterations of a non-linear smoother S: 

qJ  h - - S"' ( 4 i h , N h ,  f h ) .  

(2) Coarse-grid correction 

Calculate defect on R h :  iig = fh,- Nh(qX). 
Restrict defect to R,: zk =,RdJ,. 
Restrict qi to RH: & = Rqi. 
Solve 

N H ( W i )  = Z& + NH(qL)  

for W& on a,. 
(14) 
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Prolong correction and add to fine grid solution: 

(3) Post-smoothing 

the prolongation: 
The solution is now smoothed to eliminate any high-frequency components introduced by 

qjh+ = S V Z ( q " h +  1, Nh,fh) .  

A general FAS cycling algorithm is obtained by solving equation (14) itself by a two-grid FAS 
procedure using a still coarser grid. This idea is applied recursively until we reach a grid coarse 
enough to permit exact solution. 

The particular restriction and prolongation operators are better defined when the method of 
grid coarsening has been presented in the following section. 

CHOICE OF MULTIGRID COMPONENTS AND SPECIAL FEATURES 

In this section we consider some of the special features of our FAS procedure which are particular 
to the use of pressure-correction methods as smoothers. We present in more detail the strategy 
adopted for grid coarsening and define the restriction and prolongation operators. 

The essential requirement in any multigrid procedure is an efficient smoothing operator. 
Pressure-correction methods have not been tested in this context, although a number of other 
non-linear smoothers have been proposed in the literature (see Ghia et aL8 and Brandt and 
Dinar'). In this paper the SIMPLE pressure-correction algorithm is used. 

Another point addressed is the existence of a solution to (12c) and the manner of imposing 
global constraints-in the sense of Brandt," i.e., the fixing of pressure at a point. 

It is found that muitigrid convergence can be accelerated by a judicious choice of relaxation 
parameters on each of the hierarchy of grids and this is related to the effective mesh Reynolds 
number on each grid. At present we follow the general guidelines of Patankar'7,18 in our choice 
of relaxation parameters on each grid. However, it is hoped that theoretical work currently 
under progress will help predict optimal relaxation parameters for the grid hierarchy. 

Grid coarsening 

The motivating factor in our method of grid coarsening has been an attempt to maintain 
continuity satisfaction between grids. In short, we ensure that each coarse grid continuity control 
volume is composed of four fine grid continuity control volumes (see Figure 4). Suppose continuity 
is satisfied on the fine grid. We denote a coarse grid continuity control volume by A and the 
four component fine grid control volumes by ai, i = 1(1)4. Defining the restricted coarse 
grid velocities to be the mean of their two nearest neighbouring fine grid velocities, it is easy 
to show that: 

4 

i =  1 

u h ,  u h E g ( Q h ) ,  # H ,  Z ) H E g ( a H ) .  

(dgu, + d&v,) lA = (d{uh + d 8 v h ) l a ,  = O? 

Thus continuity is automatically satisfied on the coarser grid. This manner of grid coarsening 
has the effect that there are no coincident mesh points on any of the hierarchy of grids. However, 
it gives rise naturally to compatible momentum control volumes on all grids. 
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Figure 4. Grid coarsening: 

Fine mesh l i n e  

Coarse mesh l i n e  

Fine g r i d  c o n t i n u i t y  c o n t r o l  vo.lume 

Coarse g r i d  c o n t i n u i t y  c o n t r o l  volume 

-, fine mesh line; -a-, coarse mesh line; ---, fine grid continuity control volume; 
_- , coarse grid continuity control volume 

Restriction and prolongation 

The restriction of velocities is defined as discussed above. Coarse grid pressures p H  are defined 

Prolongation operators are derived in all cases using bilinear interpolation. 
as the mean of the four neighbouring fine grid pressures. 

Smoothing rate of SIMPLE 

Using a two-grid method where the coarse grid problem is solved accurately by performing 
a large number of SIMPLE iterations, one obtains a prediction of the smoothing capabilities 
of the SIMPLE algorithm and hence the efficiency of the proposed multigrid method. The 
two-grid method has been found to be efficient with a smoothing rate ranging from 0.5 to 0 9  
for Re = 0 to 10000. Furthermore, the smoothing rate for a given Reynolds number does not 
deteriorate significantly with grid refinement. Thus the indications are that, if the coarse grid 
problem-equation (14)-can be solved accurately by the multigrid method, this will give rise 
to a method that exhibits grid-independent convergence properties over a wide range of Reynolds 
numbers. A comparison of the practical behaviour with a theoretical analysis of the smoothing 
rate, using local mode analysis, appears in the companion paper.I2 
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Pressure constraint 

Brandt’ discusses the treatment of global constraints. For example, since the pressure field 
in the incompressible Navier-Stokes equations is determined only up to an additive constant, 
it is necessary to constrain the pressure to determine it uniquely and this can be achieved either 
by an integral constraint of the form 

r r  

or by a pointwise condition 

According to Brandt, a condition of this nature should not be imposed on the finest grid. 
Thus, for example, in the case of a discrete non-linear constraint of the form 

on a gridfunction qh, the following constraint should be imposed on the coarser grid, 

where 

and the original constraint (17) should not be imposed on the fine grid. This procedure for the 
treatment of constraints is completely consistent with the FAS procedure. 

In practice, however, imposing the constraint p = 0 at some point (xo,  y 0 ) d 2  on all grids does not 
affect the smoothing properties, as it results only in a lowest-frequency error shift. For the test 
problem considered in this paper- the driven cavity problem-the pressure pointwise condition 
is enforced at the centre of the cavity by requiring the mean of the four pressure nodes of the mesh 
cell containing the cavity centre to be equal to zero (due to the manner of grid coarsening, the cavity 
centre lies in the central mesh cell on all grids). 

Relaxation factors 

In using the pressure-correction algorithm as a smoother, an under-relaxation parameter r,,, of 
approximately0.5 is used in relaxing the momentum equations. Empirically this has been found to 
be most effective at lower Reynolds numbers and a gradual reduction in rmom at higher Reynolds 
numbers tends to improve the smoothing properties of the algorithm. At the highest Reynolds 
number solved (Re = 10 000) it has been found that convergence can be accelerated by varying the 
relaxation parameter on the grids in relation to the mesh Reynolds number (which is related to the 
amount of artificial viscosity added on each grid). As yet, little theoretical analysis has been carried 
out, but this is currently under investigation in an attempt to optimize smoothing rates by the 
correct choice of relaxation factors. 

Existence of solutions to the ‘Poisson’ equation 

The ‘Poisson’ equation for the pressure correction with Neumann conditions is singular, since 
the matrix has row sum zero. Since the column sum is also zero, there are no solutions unless the 
right-hand side sums to zero. In this case there is an infinity of solutions. This is related to the 
compatibility condition for the incompressible Navier-Stokes equations. If the pressure correction 
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is fixed at one point, there exists a unique solution. This solution will satisfy continuity only if the 
right-hand side sums to zero. It is possible to zero the sum of the right-hand sides of equation (12c) 
on all grids in the case where the continuity control volumes are uniform on all grids. This can be 
achieved by defining the finest grid to have uniform steplength h, but with steplength h/2 adjacent 
to the boundary. 

NUMERICAL RESULTS 

The driven cavity test problem has been widely used for validating solution procedures for the 
Navier-Stokes equations and has been the subject of physical flow visualization experiments (see 
Pan and Acrivos19 and Koseff and Street”). 

An isothermal, viscous, incompressible fluid is contained in a square cavity. The problem is to 
determine the flow induced by the steady, tangential shearing motion of the top wall. Tuann and 
Olson,21 in a review paper, discuss most of the important publications on the numerical solution 
of this problem up to 1978. 

Using the non-linear multigrid procedure with the SIMPLE algorithm as a smoother, the test 
problem has been solved over a range of Reynolds numbers from 1 to 10000. The results have 
been compared with the Rolls-Royce industrial code PACE. Early results have been extremely 
promising. On a typical 66 x 66 mesh the multigrid method is found to be very much faster 
than the SIMPLE algorithm applied only on the finest grid as an iterative solver. 

Tables I and I1 summarize the convergence characteristics of the multigrid method together with 
CPU times and also provide a comparison of its performance against PACE. As indicated in 
Table I, the relaxation parameter has to be reduced with an increase in Reynolds number. Table I 
gives a strong indication that grid-independent convergence rates are being approached at all 
Reynolds numbers. It must be noted that for these results the same relaxation parameters have 
been used over the whole grid hierarchy, with no attempt at optimization on each of the grids. On 
very coarse grids, as expected, no real advantage is gained in using the multigrid approach; 

Table I. Number of multigrid iterations required to  reduce residual norm by In all cases 
rua = 1 = r p .  Figures in parentheses are CPU times on a DEC Microvax 

Finest grid 

Re 2 3 4 5 6 
6 x 6  1 0 x 1 0  1 8 x 1 8  34 x 34 66 x 66 

1 
r,,, = 0.5 
100 
rmom = 0.35 

400 
rmom = 0.4 

1000 
r,,, = 0.25 

5000 
r,,, = 0.1 5 
10 000 
r,,,, = 0.15 

8 
(32 4 
10 

(41 s) 
14 

(56 4 
19 

(1 rnin 15 s) 

34 
(2min 37s) 
32 

(2 rnin 28 s) 

7 
(1 min 53 s) 
13 

(3 min 33 s) 

16 
(4rnin 14s) 
22 

( 5  min 45 s) 

35 
(1 1 min 45 s) 
42 

(12 min 49 s) 

6 
(6 rnin 18 s) 

16 
(17min 15s) 
17 

(18min 5 s )  
24 

(25 min) 

35 
(36min 1 s) 
42 

(43min 14s) 
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however, on grid 6 (66 x 66) it is clearly far more efficient to use the non-linear multigrid method 
as demonstrated by Table 11. 

Table I11 shows the primary and major secondary vortex strengths and location of the vortex 
centres with variation of the Reynolds number. Up to Re = 1000 the results are in very close 
agreement with Ghia et Gresho et ~ 1 . ~ ~  and Winters and Cliffe.23 Table IV is a listing of 
the contour heights for streamfunction, vorticity and pressure plots. Figures 5-8 are plots of 
streamfunction, vorticity and pressure distributions together with mid-cavity profiles of velocities, 
streamfunction and vorticity at Re = 1. The streamfunction is obtained by calculating the vorticity 
and then solving a Poisson equation by a linear multigrid method. The streamfunction, vorticity 
and pressure plots are indistinguishable from the results of Winters and Cliffe,23 who used the 
ENTWIFE, Harwell finite element package to obtain their results. 

Table 11. Comparison of rnultigrid PACE 
on grid 6 (66 x 66). This table gives residual 
norm reductions for multigrid and PACE 

after the same CPU times have elapsed 

Re Multi grid PACE 

1 9’60E - 05 2.08E - 01 
100 8.428 - 05 167E - 02 
400 8’91E - 05 1’59E - 02 

1000 9’81E - 05 4.27E - 02 
5000 9.17E - 05 3.29E - 01 

10 000 9.85E - 05 4.88E - 01 

Table 111. Vortex strength and location 

Re 

1 * 
0 
X 

100 $ 
w 
X 

400 $ 
w 
X 

1000 * 
w 
X 

5000 * 
0 
X 

10 000 * 
w 
X 

Primary 

- 0.100 
3.217 
(0.50, 0.77) 

3.098 
(0.61, 0.73) 

-0.112 
2.254 
(0.56, 0.61) 

- 0.103 

- 0.107 
1.861 

(0.53, 0.56) 
- 0.068 

1.001 
(0.53, 0.53) 

- 0.058 
0.728 
(0.55,0.53) 

Major 
secondary 

4.927E - 06 
- 2612E - 02 

(0.05, 0.02) 

1.404E - 05 
- 4.1 3 1E - 02 

(0.94, 0.06) 
6‘627E - 04 

- 4.290E - 01 
(0.89, 0.13) 

1.906E - 03 
- 1’201E + 00 

(0.86, 0.1 1) 

4’142E - 03 
- 3.8 12E + 00 

(0.89, 0.08) 

2’929E - 03 
- 4‘161E + 00 

(0.92,0.08) 
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Figure 5. J, and w at Re = 1 
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Figure 6. Pressure contours and surface plot at Re = 1 
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Figure 7. Mid-cavity velocity profiles at Re = 1 
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Table IV. Contour heights (the contour heights 
have been chosen so as to facilitate comparison 

with other published work) 

Contour 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

$ w P 

- 0.12 - 
-0.11 
- 0.10 
- 0.09 
- 0.08 
- 0.07 
- 0.06 
- 0.05 
- 0.04 
- 0-03 
- 0-02 
- 0.01 
- 1.E - 04 
- 1.E - 05 
- 1.E - 06 

0.0 
1.E - 04 
5.E - 04 
1.E - 03 
5.E - 03 

'1  - 180 
0 - 60 
1 - 40 
2 - 30 
2.2 -20 
3 - 10 
4 - 5  
5 - 1  

0 
1 
5 

10 
20 
30 
40 
60 

180 

Figures 9-12 are the corresponding results at Re = 400. These results are in close agreement with 
Winters and Cliffe.23 Figure 9 shows the growth in the secondary vortex at the bottom right-hand 
corner that is expected with an increase in Reynolds number. There is a clear loss of symmetry of 
the recirculation and the primary vortex centre has moved off the vertical mid-cavity line as shown 
experimentally (see Pan and Acrivoslg). 

Figures 13-15 are the high-Reynolds-number results (for Re = 1000, 5000 and 10000). A 
comparison with Ghia et d8 shows close agreement for Re = 1000, with good qualitative 
agreement for Re = 5000 and 10 000. At Re = 5000 the vorticity plot (Figure 14) is closer to that 
of Ghia etal.  for Re = 1000, although the qualitative features of the streamfunction are 
correct-the tertiary vortex expected only above Re = 2500 is present. It has been found from 
numerical experiments that the strength of the primary vortex increases with mesh refinement 
and it is clear that the weak primary vortices shown in Figures 14 and 15 would have been 
improved by the use of a finer grid. For a particular mesh refinement, an increase in Reynolds 
number after a certain critical Reynolds number (dependent on the mesh refinement) will result 
in no additional features being picked up, since the discretization always maintains the mesh 
Reynolds number below two. In comparing our results with those of Ghia et U Z . , ~  it should 
be noted that our finest meshes have (at best) mesh spacings double those of the Ghia et al. 
fine grids. 

CONCLUSIONS 

An efficient non-linear multigrid method using the SIMPLE pressure-correction scheme has been 
presented. The numerical results illustrate that it is very much faster than PACE, a code that uses 
SIMPLE as an iterative solver. 
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Figure 10. Pressure contours and surface plot at Re = 400 
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Figure 12. $ and o at mid-cavity for Re = 400 
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Figure 13. $ and w at Re = 1000 
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Figure 14. I) and w at Re == 5000 
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Figure 15. $ and o at Re = 10000 
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The indication is that, if equation (14) can be solved accurately, then grid-independent 
convergence rates can be obtained at all Reynolds numbers. This has indeed been achieved 
between the two finest grids and it is likely that further modification to the method could render it 
still more efficient. The optimization of the relaxation factors on each grid could lead to 
grid-independent convergence rates even on the coarser grids. It is possible that a local mode 
analysis would reveal the optimum relaxation parameter (as a function of the mesh Reynolds 
number) necessary to achieve this. 

The aim of the paper-as stated in the Introduction-of developing a sound solution procedure 
for stable first-order discretizations, has been achieved. This opens the way for the development of 
fast methods with higher-order accuracy utilizing defect-correction techniques. 
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